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On the nonlinear reflection of a gravity wave 
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(Received 23 September 1980 and in revised form 7 July 1981) 

I n  part 2 (Brown & Stewartson 1982) of this paper we set out the linearized solution 
of the critical layer that is expected to hold some time after the forced internal gravity 
wave of small amplitude E is initiated a t  an infinite distance above the shear layer. 
This differed from that presented in part 1 (Brown & Stewartson 1980) in that in 
part 2 we exploited to  a much greater extent the fact that the Richardson number J 
was large and obtained the solution in a form consisting of explicit functions rat,her 
than infinite integrals. Also it was demonstrated that a t  times t = O( I )  the wave did 
not penetrate beyond a certain level in the critical layer, and that critical-layer noise 
only was created above this line and transmitted below it.  I n  this paper we examine 
the development of this solution on a longer time scale T (K e*t) and show how the 
reflection and transmission coefficients which are exponentially small, 

O{exp ( - ( J  - $)* 701,  

when r = 0 increase with time. As in part 1 we obtain a reflection coefficient for the 
first harmonic that is O(r3) ,  and because of the simpler formulation of the linearized 
solution are able to  obtain a reflected second harmonic. These harmonics appear as 
complementary functions that are induced by singularities in the particular integrals 
of t,he equations. It is shown that the interaction between the initial-noise term in 
the lower part of the critical layer and an induced-noise term at  the sixth stage of the 
expansion will eventually lead to a transmitted wave. This appears a t  the ninth stage 
of the expansion and its transmission coefficient is O(+) though it is not explicitly 
calculated here. 

1. Introduction 
The study of part 2 (Brown & Stewartson 1982) completes the formulation of the 

solution of the linearized equations when a plane wave of small amplitude E is main- 
tained at  y = + 00 in a strongly stratified shear flow. I n  $ 5  of that paper we obtained 
the solution in the neighbourhood of the critical layer a t  y = 0 that  will result some 
time after the forcing is initiated. When aZT'(0) yt > I' and 1' 9 1 the stream function 
consists of two terms as in ( 2 ;  5.16),t the first of which corresponds to  the prescribed 
incident wave and the second of which we have called critical-layer (CL) noise. When 
aU'(0)  yt < v only the CL-noise is present as may be seen from (2; 5.17). However, 
as t increases this linear theory eventually becomes inadequate as the horizontal 
component of velocity and the temperature become large. As in part 1 (Brown & 

t We denote equation (5.16) of part 2 by (3; 5.16), etc 
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Stewartson 1980) the time scale on which they do so is O(E-3) and the critical layer 
then has thickness O(e8). In this third paper we examine developments on this new 
time scale 7 = O(1) (7 = €fat), and show that although, as shown in part 1, when 
t = O( 1 )  the critical layer acts as an almost perfect absorber of the incident wave, on 
this longer time scale the critical layer starts to return some energy to the shear layer 
in the form of, first, reflected and, later, transmitted waves. 

In $92, 3 we set up the nonlinear equations of the critical layer to order E and 
initiate expansions of the stream function and temperature in fractional powers of 7, 
retaining in each term where appropriate the leading ‘wave ’ and ‘noise ’ contribution 
for v $ 1. In 9 4 we show how the interaction of these two contributions in the region 
7 > 1 (7 = s-fU’(0) y7/v), induces singularities at  7 = v0( = f( 1 + ,/5)2) that generate 
two additional complementary functions for 7 > v0. One again represents CL-noise 
but the other leads to a reflected wave with reflection coefficient O ( T ~ ) .  This is a first 
harmonic and its coefficient was also calculated in part 1 for the special case of a 
hyperbolic velocity profile for the basic shear flow. In  $ 5 a similar investigation gives 
a second harmonic with reflection coefficient O(T%), and for the first time a comple- 
mentary function is induced that extends to the region 7 < 0. This turns out to be 
of importance for the eventual appearance of a transmitted wave. 

The general strategy of the expansion is explained in 8 6, where it is shown that 
eventually all harmonics will occur in the reflected wave. In  5 7 the development of 
the solution in the region 7 < 1 is discussed and it is demonstrated that interaction 
between the initial CL-noise of ( 2 ;  5.17) with an induced complementary function of 
order 77,  that itself also represents noise, will in turn lead to a transmitted wave with 
transmission coefficient 0 ( 7 1 2 ) ,  although its coefficient is not calculated explicitly. In 
3 8 we present a summary and discussion of all three papers. 

2. The nonlinear equations of the critical layer 
In $ 5  of part 2 we developed the linearized theory in the neighbourhood of the 

critical layer at y = 0. The solution obt,ained there is the ultimate form that results 
a long time ( t  B v 9 I )  after the forcing at  y = 00 is initiated. When aU’(0) yt > v the 
stream function consists of two terms as in (2; 5.16) the first of which corresponds to 
the prescribed incident wave and the second of which we have described as critical- 
level (CL) noise. When aU’(0) yt < v the CL-noise only is present as may be seen 
from ( 2 ;  5.17). However, as t increases this linear theory eventually becomes in- 
adequate as the horizontal component of velocity and the temperature become large. 
As in part 1 the time scale on which they do so is O(e-*) and the critical layer then has 
thickness O ( E ~ ) .  If in ( 2 ;  2.1) we write 

y = €*Y/U’(O),  ax = x, 7 = &at, 

$ = dY(X, Y ,  7) /U‘(O) ,  T = d E ( O )  S ( X ,  Y, 7) /U’(O) ,  (2.1) 

then the appropriate equations are, in the limit E = 0, 

(2.2a) 

( 2 . 2 b )  
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The initial conditions for these equations are specified by the requirement that the 
solution shall match, as T --f 0 ,  with the linearized solution of § 5 of part 2,  which, as 
noted above, we envisage to be the form, when v 9 1 ,  taken for large t of the solution 
of an initial-value problem starting at  t = 0. Then T = O( 1 )  represents the next stage 
in the development of the flow and we shall find that on this time scale the outer flow, 
where y = O( l ) ,  although still linear, is no longer steady. 

For our initial conditions for (2 .2 )  we shall take the solution summarized in ( 2 ;  5 .16) ,  
( 2 ;  5 .17) ,  which means that 

Y = e i x Y l l ( Y , ~ ) + c . c . ,  S = - e i x -  v ayll+c.c. aY (2 .3 )  

as r -f 0, where 

whenq =- 1 ,  and 

when q < 1 .  The meaning of N in ( 2 . 4 ) ,  (2 .5 )  and subsequently in this paper is that 
the terms given explicitly on the right-hand side are leading terms in an asymptotic 
expansion of the left-hand side in descending powers of v. When two terms appear there 
are two components to  the expansion of different forms each of which is dominated 
by the term explicitly quoted. Here 

where a- is defined in (2; 5.14) .  Near r,~ = 1 

where, as in (2; 5 .7 ) ,  
c = (7 - 1) (&VP. 

In addition there will be matching conditions with the region outside the critical 
layer, namely that the incident wave from above cannot be changed and there can be 
no incident wave from below. The reflected and transmitted waves have amplitudes 
that are functions of T and ultimately include all harmonics. These solutions satisfy 
the linearized equations with a/a t  set equal to  zero, and have been derived in 0 4 of 
part 2.  

We now proceed as in part 1, setting up an expansion for Y, S by repeated substi- 
tution into (2 .2 ) ,  beginning with Yll, Sll. We write 

m m 

y = C y r ( X ,  Y ,7 ) ,  = Z S,(X, Y ,  T ) ,  (2.9 1 
r = l  r = l  

where Yr, Sr are of the form 

r r 

n= - r  n= - r  
Yr  = 2 e n i X Y r n ( Y , T ) ,  8, = C en iXSm(Y,T) ,  (2 .10)  

Yl0 = sl, = 0, (2 .11)  
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(2.12) 

the complex conjugates being denoted by tildes, and where wit,hout loss of generality 
we may take T - n to be an even integer or zero. 

On substit,uting (2.9), (2.10) into (2.2) we find that Yr,, S,, satisfy 

(2.13) 

($ + in Y )  s,, - iny,, = H,,, (2.14) 

where M,,, HTIL are known functions of Y and r depending on the previously calculated 
Y P , S 1 ,  with I 6 p 6 r -  1.  If we eliminate S,, between (2.13), (2.14) we find that the 
resulting operator on Y,, can be factorized as could t,hat on CD in (2; 5.1), and we 
mav write 

(2.15) 

where 

( $ + n i Y ) s -  mi($ + iv) G:, = i{(& + iv) Jf,, - (4 + v2) H,,}, 

($ + ni Y) - ni($ - iv) G; = i{ (8 - iv) M,, - (& + v2) H rn } . 

(2.16) 

(2.17)  
ay 

As we found in part 1 each Yrm, T-~S,, is of the form 

?-2 tn ivt  $rA&r+n)A&r-n)s  rn(7 ,  v), (2.18) 

where the powers of 7 can differ from those associated with the reflection and trans- 
mission coefficients %',, and Y,, because of the 7-dependence of 7. Part  of our aim 
in the rest of this paper is to obtain, a t  least in principle, the leading term in theuniform 
expansion of F i n  descending powers of 11, a typical term being of the form 

v-tNgl(7, .N) e i Y f i ( ? ) ,  (2.19) 

where N is an integer, f R  (R = 1,2,  ...) is a function of 7 only, and qR(7, N )  a function 
of 7 and N .  Broadly, we shall find that 

e, = o(v-l=%l,?n) (2.20) 

for all admissible n,nz but exceptions will occur because of cancellations and the 
(highly significant) generation of complementary functions. 

I n  fact, were it not for these, the expansion (2.9) would be straightforward and of 
little interest. They arise in the following way. From (2.18) we may expect a typical 
term of M,,, H,, to  be 

and to  force a G,, of the form 
v-t..Vq2 eivfz, (2.21) 

where K is a quadratic in f d  and essentially also in 7. If and when K vanishes we say 
resonance has occurred, and to prevent the singularity which would otherwise arise 
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a t  this point a complementary function niust be added to  G,,. The reflected and 
transmitted waves can only be set up by these functions. We note that, as in part 2 ,  
the terms that will generate reflected and transmitted waves in the outer flow have 
been separated in (2.16), (2.17). For I Y (  9 1 it is G G ~  that will have a complementary 
function proportional to  1 Y I f - i u ,  which corresponds to incident waves from above the 
layer, of which there is to be only one, with n = 1 ,  and to  transmitted waves below 
the layer. On the other hand, CTf, has a complementary function proportional to  
I Y IB+iu and so corresponds to waves reflected above the layer, and to waves incident 
from below the layer, which must be excluded. 

3. Calculation of the second-order terms 
It emerges that,, as far as the calculat'ion of g3,, W,,, the first two non-zero reflection 

coefiicients as defined in ( 2 ;  4.141, is concerned, we do not need the explicit form of 
any terms for 7 < I or for 7 N 1 .  However, we shall find Y,, for all 7 in order to illus- 
trate the effect of the incident wave on the mean flow. First we calculate Y,,, S,, in 

N 

y ~ ,  = e2iX y~,, + Y,, + e-2ix y22, 8, = e2i-y x 2z+ x 20 -+ e-zix 22- (3.1) 

It follows from (2.2) that, if aY,,/ar, aS2,/ar are bounded as I Yl --f a, 

where Yll, S,, are given by (2.3)-(2.8), and the additive arbitrary functions of r have 
been set equal to  zero as they do not affect the subsequent discussion. The right-hand 
sides of these equations take different forms in the three regions, and when 7 < 1 

(3.3) 

to  which should be added complementary functions a2,r/7, b,,r2/72, where az0, b,, 
are constants since both complementary funct'ions must depend on I' alone, and in 
the r ,  7 variables must have r-dependence r and r2, respectively, to satisfy bhe require- 
ments of (2.18) on Yz0,S2,. However, az0 = b,, = 0 to avoid singularities a t  Y = 0. 
In  the transition zone near 7 = 1,c = O( 1 )  and the solution that matches with (3.3) is 

( 3 . 4 4  

(3.4b) 

where 

When 7 > 1 the result corresponding to  (3.3) is 

(3.6a) 

(3.6b) 
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I n  making the choice az0 = 21AI2, b,, = 0 for 7 > 1 two arguments may be used. 
Either they are necessary to ensure a detailed match with (3.4) as < --f co, or we may 
note that, in terms of 6, = O(V-8) from (3.3), and so (3.6) must lead 
to similar orders of magnitude as 7 + I + . The second argument is simpler to apply 
and may be used in more complicated situations to  explain the appearance of com- 
plementary functions and hence travelling waves in parts of the critical layer. The 
term O ( T / ~ )  in ‘Pz0 for large 171 was also obtained in part I,  and implies that the 
hoiizontal velocity component contains an adjustment to the mean profile that is 

To evaluate Y’,,, S,, we return to (2.16), (2.17) and find that, to  leading order in v, 

= O(V-*), 

O(c2y-2). 

so that the equation for G& is homogeneous, and hence G.& = 0 as there must be no 
incident wave from below the critical layer. Although here we have obtained this 
result only to the leading-order term in v ,  in part 1 it was shown to be true for all v. 
If in (2.17) we now write G& = 2vYm it becomes 

where the right-hand side has been retained to leading order in v. We shall calculate 
Y2,  in 7 > 1 only, as it will be shown in 5 4 that its precise value when 7 < 1 or 7 E 1 
is not required t o  calculate the reflection or transmission coefficients, at least to  the 
order considered here. Using (2.4) and keeping a contribution of the type of the first 
term of (2.4) (the ‘wave’ term) and one of the type of the second term (the CL-noise 
term), (3.8) becomes, to leading order in v ,  

for 7 > 1,  where the first term on the right-hand side is O(v- l )  instead of the expected 
O( 1) owing to a cancellation. Again to  leading order in v ,  the solution of (3.9) is 

(3.10) 

The corresponding solution for X,, in 11 > 1 is 

In  7 c 1 both YZ2 and T-~S,,  are made up of noise terms only that consist of a product 
of T1+2iue-21Vq with an algebraic function of 7, and this is the only property we shall 
need. When 7 E 1 there is a boundary-layer solution that bridges these, but again it 
is passive and we shall not require its precise form. 

The absence of a term in l $ l * - i Y  or l7I*tiv indicates that  there is no transmitted or 
reflected second harmonic at  this stage. The first reflected second harmonic occurs 
for y > 1 at the Y42 stage. In  S 4 we calculate the first correction W,, t o  the reflection 
coefficient. I n  part 1 the transmission coefficient Y31 was shown to be exponentially 
small in v .  
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4. The calculation of 9 3 1 ( 7 )  

For this purpose we must solve (2.16), ( 2 . 1 7 )  for G&, the forcing terms being 

- ivy l l -  - 2 - -  (4.2) 
ay 

respectively. From an examination of the leading terms in the asymptotic expansions 
of the right-hand sides of (4.1), (4.2) we see that is forced by it number of terms 
of the form 

(4.3) ++niv++re--ivhq 7-iv(n-h) @t ( 
r n ~  "I 2 

where h is any integer satisfying - & ( r - n )  < h < i ( r + n )  when 7 > 1, and h = n 
when 7 < 1; also r = 3,n = 1 and (DrnA is a known algebraic function of which 
vanishes as 171 --f 00. A corresponding result holds for general r ,  n but there may be 
additional terms which arise from complementary functions of ( 2 . 1 6 ) ,  ( 2 . 1 7 ) .  We have 
already seen how these arise when r = 2 ,  n = 0, and another set arises a t  this stage. We 
now write 

Q& = ? - 2 + n i ~ + + r ~ - i v A ? 1 ~ - i v ( n - - h ) T i  rn ( 7 ) > (4.4) 

in ( 2 . 1 6 ) ,  (2.17), so that T& satisfy 

(4.5) 
i + - &;tnn(r) - +in - ih(8r - 1) - - (n - A )  (gr  - 2)) T + ~  = (z 7 

where Qhn(7) is the quadratic 

Qkh(y) = h ( n - h ) 7 2 + + n 2 - 2 h ( n - h )  f n)y+h(n-h). (4.6) 

Our requirements on G,, are that G& must have no term O ( l " ~ l i + ~ ~ )  when 7 is large 
and negative, for if so there would be a wave incident on the shear layer from below, 
and that G, must not include a term O(qi-iv) when is large and positive or there 
woutd be an additional wave o(7,) incident from above. Also, G& must. not be singular 
a t  7 = 0. This implies, from (4.4), that, for small 7, T,, - f'(n-h). This is a property of 
one of the solutions of (4.5); the other must therefore be excluded in any region 
including 7 = 0. 

The complementary functions of (4.5) for T,f, are of the asymptotic form 

(e-iuAv 7iv(n-h))  " I i + i v  1 ( e i v X g  7iv(n-h)) e-ivnq 7-iu(n+1)-&3r-1) (4.7) 

( e i ~ h y  "Iiv(n-h)) 7 ) - i v  > ( e i v h ~  7iv(n--h)) e-ivn7j 7-iv(n-1)-&(3r-1) (4.8) 

as 171 -+ 00, while for T;% they are of the form 

as 171 + 00. When 7 1 the first complementary function in (4.7) corresponds to a 

t 1.0. in which the powers of 7 involved are independent of u. 
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reflected wave in G,+, and the second decays and corresponds to noise. I n  (4.8) the 
first corresponds to a wave incident from above the layer, which must be excluded, 
and the second is again noise. When y < - 1 the first complementary function in (4.7) 
is unacceptable, while the first in. (4.8) gives a transmitted wave in G,. Again the 
other terms decay. We shall see below how such complementary functions can be 
induced in the case r = 3, n = 1. 

If the quadratic &$A(T)  in (4.6) has no zero for any 7 then for v $ 1 the solution of 
(4.5) is 

so that T& -+ 0 as (71 --f 00. Let us now look a t  the implications of this result for T,. 
If h = - 1 or 2, &gA(r) = - 2(7 - and has a double zero a t  y = 1, so that a particular 
integral for T3; is 

T A  N T@&A(T)/v&&A(v),  (4.9) 

(4.10) 

for any tj 1 .  However, on examining the behaviour of the solution near the possible 
singularity a t  7 = 1 it  may easily be shown that it is smoothed out in a region of 
thickness O(v-4) and generates complementary functions for T ,  of the form of the 
second of (4.8) for both 9 < 1 and 7 > 1. This represents noise and we are already in 
possession of such a term in Gg, since its exponential behaviour as a contribution to 
G, is eciV?, which is present in G, as the term of the form (4.3) with h = 1 .  Again, if 
h = 0 or 1, & ~ ~ ( y )  = 0, and (4.5) reduces to  a first-order equation whose solution also 
has a singularity a t  7 = 1 to be smoothed out in the region of thickness O(v-4);  but 
again no new exponential behaviour is added to  G, for either y > 1 or y < 1. Thus 
the exponential behaviours of the contJributions to  G, are exactly those of its forcing 
terms, namely e-iphIy-iv(1-U for - 1 < h < 2 if 7 > 1, and h = 1 if y < 1. 

The solution for T& is quite different. If h = 0 or 1, &Ah is proportional to 7 and 
this does not lead to a singularity of (4.9).  However, if h = - 1 or 2 ,  

& & A ( r )  = -2(y2-37+ (4.11) 

which vanishes when y = yo ( > 1) and y = yo1 ( < l),  where 

yo = O,2, wg = &( 1 + 4 5 ) .  (4.12) 

The root that is less than unity is of no interest here, since when 9 < 1 the function 
IPQlh(y) is non-zero only if h = 1. We first consider h = - 1 and show that there is a 
complementary function induced for 7 > y o  and that it does indeed correspond to a 
reflected wave. 

When h = - 1, equation (4.5) for T& becomes 

where for convenience we have written @hh(7) = gA(y ) .  I n  the neighbourhood of 

T - 70 = v-4p7 (4.14) 
= yo we write 

so that (4.13) reduces, when v $ 1 ,  to 

(4.15) 
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(4.16) 

where p31 is an arbitrary constant and y = 56/34.  Now outside t,he region p = O( 1 )  
a particular integral for T31; is 

- 79-1(7) 
T3i 2v(72- 37 + 1 ) ’  (4.17) 

and it is clear from (4.16) that these cannot match as 7 + vo and a s p  tends to both 
plus and minus infinity, for any value of /331. The remedy is to correct (4.17) by the 
addition of a complementary function O(v-4). We write it in the form 

~ ~ ~ ( 7 )  e i ~ Q ~ ( 7 )  [i + o(v-*)j, (4.18) 

and on substituting into (4.13) find t,hat 

7”;:: + 37(7 - 1 )  D.;, + 2(72- 37 + 1)  = 0, (4.19) 

(4.20) 

Since (4.18) must provide a mat,ch with the term e-iypz in (4.16), Dil(y) = 0 when 
7 = qo, and hence 

27D;l = - 3(7 - 1)  + (y2 + 67 + I)), (4.21) 

{27D;, + 3(7 - I)} c;, + ( To;, + + 3 - 

is the required root of (4.19). It then follows from (4.20) that 

(4.22) 

where C, is a constant for 7 > yo and y < T ~ ,  but not necessarily having the same value 
in each region. On integrating (4.21) we obtain 

D31(7) = - #7 + 210g7 f $(q2+ 67 + I)& + #log{r + 3 + (r2+ 67+ I)*} 

- Q log (1 + 37 + (r2 + 67 + l)*}. (4.23) 

For 4 > 0 the obvious meaning may be attached to  all terms of (4.23) and so, when 

D31(7) = - 7  + 3 log 7 + $ + $log 2 + O( 1 ) .  (4.24) 

(J31;(7) - 2-kiu-ietivC O Y I  T # + i u ,  4 f i u  as 7 --f 00, (4.25) 

7 B  1 ,  

Hence 

and corresponds to a reflected wave. 
At 7 = 0, D,, has a logarithmic singularity, but the corresponding contribution to 

G& remains smooth. A standard transition point (of the type associated with Airy 
functions) occurs when 7 = - 3 +%I8 (r2+ 67 + 1 = O ) ,  out of which two branches 
emerge for 7 < - 3 + 4 8 ;  initially these are equal but one of them increases exponen- 
tially as 7 decreases further, while the other decreases exponentially. Only the first is 
therefore significant a t  the second transition point where 7 = - 3 - 4 8 ,  and in turn 
it splits into two branches defined by (4.23) in one of which (v2 + 67 + 1)* is positive 
andint8heother(72+ 67+  1)tisnegativeforq < -3-,/8.Thebranchwith(v2+ 67+  I)* 
negative corresponds to a wave incident from below that is exponentially large ( evn )  

in magnitude when compared with Y,, and must be rejected. It follows that Co = 0 
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if 7 < qo, and (4.18) matches with (4.16) if /3,, = 0 and the value of C, in 7 > 7, is 
such that 

~ ~ ~ ( 7 , )  eiuDs,(a) = 5-4e-fir ( ~ 3 v )  S-l(T0). 
no, 4 

(4.26) 

The function g-l(y) is the coefficient of 7t+iu71-2iueiu'l in (4.1) and the contribution 
to it from the terms involving Y,, is O ( d )  and from those involving S,,, Y2, is O(v-4). 
Hence ignoring the former ~e obtain, for r,~ > 1, 

(4.27) 

and from (4.22), (4.33), (4.26) 

It follows from (4.25) that  

(4.29) 

for 11 % 1.  Then on use of (2; 4.12),  (2; 5.14) and (2.1) we obtain for 9 3 1 ( 7 ) ,  the first 
reflection coefficient, the expression 

which reduces to  equation (9.32) of part 1 when R'(m) = R'(0) = U ' ( 0 )  = U(o0) = 1 
and I?+ = log2. 

The effect of the forcing term rive-2iu?l corresponding to  h = 2 can be discussed in 
the same way. A complementary function has to be added in 7 > 7, and its exponential 
behaviour is e-iuD31(y), where D,, is given in (4.23). For 9 p 1 the product 

r i u  e-2iu7 e-iuDs,(7) r-2iue-iur, (4.31) 

which is not a reflected wave but just noise as in (4.7). Its coefficient need not be 
calculated, as i t  emerges that it does not affect even g42(7). 

I n  part 1 we showed that =T31(7) = O(e-."). As this is an asymptotic analysis for 
large v the exponentially small terms cannot be calculated but i t  is fairly clear from 
the method used here that T,, will be smaller than any negative power of 7, since it 
is the exponents that  matter and they have all been included. 

So far the position is as follows. At large values of t ( p v) we have a quasi-steady 
situation with a primary incident wave that is absorbed a t  aU'(0)  yt/v = 1 (7 = l) ,  
its only effect on the region 7 < 1 being to produce critical-layer noise that decays as 
7 +-co.As~increasesthiswavestartsto bereflectedfromtheliner = ro(  = $(1+45)2)  
with a reflection coefficient that  is O ( V - ~ ~ ~ + ~ ~ " ) .  Only critical-layer noise is generated 
in 7 < 7,. I n  5 5 we show that a second harmonic is generated above the line 7 = 2 + 4 3  
( > r0) which gives 942(7). An additional noise term is generated below 7 = +(4  + 4 7 )  

The results of this section have also been checked using an alternative method in 
which we write G,, = 7f+iuL3,(~)  in (2.16), (2.17), and construct the solution regular 
a t  7 = 0 with the correct behaviour as 171 -+ m by the method of variation of para- 

( < 70). 
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meters, Examination of the behaviour of the integrals for u 9 1, which we shall not 
reproduce, shows that, at any value of 7 a t  which there is no saddle point, L,, is given 
by (4.9) multiplied by the appropriate exponential, but a t  a saddle point it is larger 
by a factor u d  and is given by a constant multiple of a complementary function as 
in (4.18). The saddle points of the integrals correspond to the zeroes of &31h(7) .  

Consideration of the equations for Y3, shows that no complementary functions are 
generated and the terms are obtained by division of the forcing terms by the appro- 
priate as in (4.9). Thus there is no induced third harmonic that is U ( T * + ~ ~ ” )  
and no reflection or transmission a t  this stage. 

5. The calculation of 9Za2(7) 

Continuing with the expansion we now consider the calculation of Y, and S, in 
(2.9). Among the various constituents of these functions in (2.10), i t  is easy to  show 
that Y,,, S,, arise entirely from terms similar to (4.3) with r = n = 4,O Q h < 4, and 
merge into the general noise structure in the shear layer; no complementary functions 
are induced. Also YI0, S,, modify the basic shear flow in a similar way as do Y20, S20. 
Interest a t  this stage therefore centres chiefly on the computation of Y,,, S,, and we 
shall show here that there is a reflected wave among their components which provides 
the leading term in the second harmonic of the reflection coefficient 9. 

There are three groups of terms in Y,,; one group arises from the interaction of the 
induced complementary functions (4.18) of G& with Yll,Sll, another is formed by 
direct forcing from Y,, and is given by terms of the type (4.3), and the third consists 
of induced complementary functions of G&. Let us dispose of the first of these groups. 
They are present only when 7 > qo ( =  t(l + 45)2 )  and are forced by terms with 
exponential behaviour : 

eivq 7-3iv ei~D31(q) 9 p 2 i v  eivD31(?]), e-2iu7 e - ivD31(~)  9 e-3ivq 7 i u  e- ivD31(~) .  (5.1) 

The corresponding contributions to G& are obtained from these on multiplying by 
algebraic functions of 7 that are bounded for all 7 > qo and tend to  zero as 7 -+ m. 
Hence they generate no new complementary functions nor any reflected wave. 

The forcing terms coming directly from Yll, S,, are all of the form (4.3) with r = 4, 
n = 2, and - 1 < h < 3 for 7 > 1 while h = 2 if 7 < 1. We now make the substitution 
(4.4) and consider (4.5) with r = 4, n = 2. The complementary functions of these equa- 
tions take the asymptotic forms given in (4.7), (4.8). Further i t  is impossible to select 
any complementary function which does not represent an incoming wave from either 
above or below the shear layer or which is singular a t  7 = 0. Hence no complementary 
functions can be generated over the entire range of 7. They can only appear for a 
range of 7 bounded above or below. 

For v % 1 a particular integral of (4.5) is given by 

(5.2) 
7 @ & M  

Tk - v[h(2 - A )  72+ 2(h2- 2h + 2 i- 1) 7 + 4 2  - A ) ] ’  

and we deduce that this gives the required contribution to  Y,, unless the denominator 
Q P z A ( 7 ; ) )  of (5.2) vanishes in 7 > 1; for 7 < 1 we have h = 2, and vanishes only a t  
7 = 0 which is not a singularity of T,,. The denominator has a zero in 7 > 1 in two 
cases only. These are h = - 1 and h = 3, and in each case &Ah vanishes a t  

7; = 2 + 43, (5.3) 
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and Qkn a t  
7; = 9 ( 4 + 4 7 ) .  (5.4) 

We shall now show that when h = - 1 the singularity in T& at  = 7; induces a com- 
plementary function for 7 > that  gives rise to a reflected wave with reflection 
coefficient W,,, while that at 7; in TG induces a complementary function in 7 < 7; 
corresponding to CL-noise. Nevertheless, this is a departure from previous results in 
that the solution in 7 < 1 is no longer composed solely of terms like those in (4 .3) ,  
and eventually the modifications induced lead to  a transmitted wave. When h = 3 
the complementary functions appear only for 7 > 7; and correspond to noise when 
7 9 1. Again there is no transmission coefficient a t  this stage though, as pointed out 
in the discussion, one is expected to  be associated with Y,,. 

We first consider h = - 1 and obtain Ba2(r). This arises from T4+2 and is computed 
in much the same way as 9$?,1(7) in § 4. The equation corresponding to (4.13) is 

We now compute @42,-l. Since the term in 7-2iu in YZ2 turned out to  be v-l  smaller 
than expected, its effect as a forcing term can be ignored. This means that Y,, can 
also be neglected as we are computing only the leading term for v 1. We need the 
terms O(r,-2iueiuv) in Y31, S31, which are, respectively, to leading order in v, 

Thus the forcing term - v(Ma2 + ivHq2) !or the equation for G& has the contribution 

Then finally, to leading order in v, 

(5.9) 

with an error that  is of relative order v - f .  

( = 2 + 43) and is written as Ca,(7) e i u D 4 2 ( ? ) ,  where 
As in the calculation of B31 the complementary function must be added for 7 > 72' 

O42(7) - 211 + 3log7 + (q2 + 47 + I )&+ 210g{7 + 2 + ( Y 2 +  47 + I)&} 

- log { 1 + 27 + (7' + 47 + I)+}, (5.10) 

(5.11) 

and C, is a constant. It is noted that D,, is similar in form to D,,, having a removable 
singularit'y a t  7 = 0, so that G,, is regular there, and two transition points a t  

7 = - 2 +  J3. 

As we argued in $ 4 ,  unless Cl = 0 for 7 c TZ+ an unacceptable, exponentially large, 
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incident wave appears as 7 +-m. Finally, the behaviour of Y,, for 7 9 1 is found 
to  be 

(5.12) 

which leads to  B,,(T). The result is, with a relative error O(vd) ,  

This is the first coefficient of ei(zaz+m+u) induced outside the critical layer as T increases. 
Here, as in (2; 4.7)) 

m+ = V(R’(co)/R’(O))t (U’(O) /U(m)) .  (5.14) 

We now examine briefly the effect on T4+2 of the singularity at 7 = 7; with h = 3, 
and on TG of the singularities a t  7 = 7; when h = - 1 and 3. For the effect on T,f, 
with h = 3 we find that the complementary function which must be added for 7 > 7; 
has exponential behaviour e-ivD42(7),  where D,, is given by (5.10). Thus the product 

7 i v  e-3iu7 e-iuDaa(7) ,,.,-3iv e-2iv7 (5.15) 

for 7 9 1, and we have the decaying second complementary function as in (4.7). It is 
easy to show that for large 7 there is a factor 7-’zL in (5.15). 

= 7; ( = +(4 + 4 7 ) )  
that induces a complementary function with exponential behaviour e ivF4z(7) ,  where 

For TG we first consider h = - 1.  There is a boundary layer a t  

.8’42(7) = - 27 + 3 log 7 + (7’ + I)* - log { 1 + (v2+ I)*}. (5.16) 

The product ~ j - 3 ~ ~  eiv7 eivF42(7) is regular a t  7 = 0, and for 7 9 1 is of the form q-iv so 
would contribute a term in ~ ~ + ~ ~ ~ 7 $ - ~ ~  to  GG, which is unacceptable. However, for 
7 < - 1 the product is of the form ( - 7)-iv e-2iv?, and corresponds to  the second com- 
plementary function in (4.8) which represents decaying CL-noise. This is acceptable 
and therefore a multiple of the complementary function must be added for 7 < 7;. 
When h = 3 a similar argument shows that the complementary function must be 
included for 7 > y;, but for 7 9 1 it decays as noise. 

6. The strategy of the expansion 
I n  this section we shall explain in general terms the manner in which the leading 

terms of the principal harmonic and induced second harmonic of the reflected wave 
appeared, and indicate the subsequent development of the solution in ascending real 
powers of T .  The crucial equations are (2.16), (2.17) for G&) and since, as noted in 
(4.3)) the T-dependence of Yrn(r ,  7) is T - ~ + ~ ~ ~ + * ~ ,  we write 

G$n( Y ,  T )  = T - ~ + ~ ~ ” + % ~ P & ( ~ ) ,  
whence P& satisfy 

Here E& are functions of 7 to be specified more precisely below a n d f k  are also func- 
tions of 7 and v which may be written in descending powers of v. We have obtained 
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the values of E and f in special cases earlier in this paper. The summation sign in (6 .2)  
indicates that a t  any stage of the expansion there are a finite number of such terms, 
of similar form but with different Es. 

Any reflected wave derives from one of the complementary functions of the equation 
for P:, when 7 9 1 and any transmitted from the equation for P;, for 7 < - 1. Simi- 
larly, when 7 < - 1 the equation for P,f, contains unacceptable waves incident from 
below the shear layer, and when 7 B 1 that for P& contains waves incident from 
above the layer, of which Yl1 is the only one to  be permitted. When v $ 1 the expo- 
nential behaviour of these Complementary functions is 

eiuU&(s)) e ivv$(s ) ,  

where, from (6.2)) 
(6.3) 

We examine now the principal properties of the complementary functions for P$n 
defined by U,+ and V z .  When 7 B 1, U t  gives the reflected wave since U,+‘ z r-l, and 
V,+‘ z - n ,  which corresponds tonoise. Moreover, V$’ is singular at 7 = 0 and both 
U;’ and V$’ have singularities a t  the (negative) roots rnl, qnz (rnl > vn2) of 

n2(7 + 1 ) 2 +  4n7 = 0 .  

If either of the associated complementary functions is non-zero in 0 > 7 > ynl i t  
splits into two branches a t  7 = rj~,~, one of which becomes larger by a factor evn a t  
7 = yn2, the other being smaller by the same factor. At 7 = vn2 a further split occurs, 
and for 7 < vn2 both exponential behaviours in (6.3) occur, of which V $  represents a 
wave incident from below the shear layer. 

The complementary functions for P;, are simpler since, for n > 1, n2(7 + 1)2  - 4n7 
has no real roots. Thus U ;  gives the exponential behaviour of the complementary 
function regular a t  7 = 0 for all 7, and represents an incident wave for 7 9 1 and noise 
for 7 < - 1 .  On the other hand V ;  represents a transmitted wave for 7 < - 1 and 
noise for 7 9 1 but is singular a t  7 = 0. If n = 1 

and it should be understood that either complementary function splits into a linear 
combination of both on crossing the point 7 = 1. 

These complementary functions appear in the expansion of YP, S in the following 
way. A particular integral of (6 .2)  for v $ 1 (not necessarily uniformly valid for all 7) 
can be obtained by assuming that P& has the same exponential behaviour as the right- 
hand side and, provided this particular integral is not singular, no complementary 
function is needed. A singularity arises if 

WL(7) = Ein(7)) (6 .7)  

for some 7,  say 7s where W, is any one of U$, V $ ,  Then, depending on the value of vs, 
one of the two possible complementary functions appears, for 7 > vS or for 7 < 7,<. 
The criterion for selection is simply that a complementary function singular a t  7 = 0 
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is not permitted in any range including y = 0; and complementary functions repre- 
senting incident waves are not allowed in y B 1 or y < - 1. Thus if we consider the 
contribution to  the right-hand side of (6.2) which comes directly from Yll, SI1, i.e. 
if we neglect the effect of any other complementary functions with n > 1, 

E& = -hy-(n-h)logy = (n-h)  U ; ( g ) + h V y ( y ) ,  (6.8) 

where --i(r--n) < h < Q(r+n). For y < 1 

E&(y) = - n y  = nU,(y).  (6.9) 

This last equation implies that (6.7) has no solution for any y < 1 except if n = 1 and 
W = U ;  . Then it becomes an identity, but as a result no new complementary function 
is generated. 

For y > 1, complementary functions arise if, for any y, 

Thus we see that if h < 0 ,  U $  can occur, while if n < A,  V;l, can occur, except when 
n =  1.Whenn = l,E;’(l) = Vr‘(1) = U,’(l).Weconcludethatifn= r , r  > lnocom- 
plementary functions are induced by (6.6) while if r > n > 1 then U: is induced for 
y > gsl ( > 1) (the appropriate solution of (6.10)), U; is inducedfor y < ys2 and V$ are 
induced for y > rs3, ys4, the values of y being different in all four cases. The situation 
is similar if n = 1 for U?, V;, but for U ; ,  V;  special care must be taken since ys = 1 
in both instances. The treatment of the solut’ion near ys = 1 has already been con- 
sidered in § 4, and again we may conclude that no additional complementary function 
is in fact induced by the double singularity which results. 

As explained earlier, each U,+ corresponds to a reflected wave for g 9 1, each V$ 
corresponds to noise for y B 1 and each U; corresponds to noise for y < - 1. Thus we 
can see in principle that reflected waves of all harmonics occur, the leading term of 
the nth harmonic appearing a t  the (n + 2)th stage and being of amplitude r f ( n + l ) .  

Furthermore, after the r = 3 stage not all the E,, in (6.2) come from (6.8) if y > 1. 
We may plausibly expect that E,, will in general be a linear combination of U ;  , U$,  
V: (1 < s < r - 2) with the provisos that the sum of their coefficients, after multi- 
plication by s, be equal to n, and to r if no regard is paid to sign. We shall discuss 
the general situation in y < 1 in § 7.  

7. The transmitted wave 
We have already seen that for r < 3 the only possible form of E,, when g < 1 is 

- n y ,  but for r 2 4 additional terms must be considered since the restraint on the 
incident wave implies that U;(y) can appear in some of the E,, when g < gsz. I n  order 
to induce a transmitted wave, a complementary function with V ;  as exponential 
factor must be generated in y < 0; were one to be generated in y > 0 the singularity 
a t  y = 0 in V; ensures that it would be confined to an infinite region above y = 0. 
Now we have already seen that the simplest form of E,, for y < 0,  namely nu,, 
cannot generate a V; and so we must now consider E,, which involve U ;  for n > 1 
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and which can occur if r 2 4. Two inequalities are of assistance in this study, namely 
that, when 7 < 0, 

(7.1) 
V;‘(v) > V;L,(T/) > 0, nV;Ll(7) > (n- I )  V;’(T,I) > 0. 

As a preliminary, we observe that, as shown in 9 6, ( 7 ;  is not induced by the com- 
putation for n = r ,  and hence Ern does not contain U;-2 if n = r - 2. Otherwise, we 
may see by inspection that a typical form for E:, is given by 

where A, 2 0, fit 2 0. There are restrictions on So, To, namely that To, So < r - 3, and 
more importantly 

(7.3) 

where Z,, = r if So = To = 1 
( 7 . 1 )  it follows that 

SO To 

1 1 
I; 8A.s + I; tPt = z r n ,  (7.4) 

but Z,, < r - 2 otherwise. Then by the inequalities of 

Since So’ Ui0’ - U;‘ is positive and an increasing function of So we maximize the last 
expression if we choose So to be as large as possible for fixed r ,  n. This by inspection is 
+(r + n)  - 1, so finally 

E:, < Ugo‘ + (n - So) Ui-‘. (7.6) 

We now see that the best chance of generating a complementary function involving 

(7.7) 

except when n = r - 2 or r ,  in which case we know that it is impossible; E, generates 
no complementary functions and E,,r-2 generates only UF-~ .  I n  order to  generate V ;  
in 7 < 0 we must have 

for some 7 < 0. Since V ;  has a singularity at 7 = 0, the complementary function is 
non-zero only for more negative values of 7. By direct substitution it may be shown 
that (7 .8)  reduces to 

which has real negative zeroes only if 

V ;  a t  the rth stage of the expansion is if 

EL, = Uio’ + (n - So) Uc‘, So = i ( r  + n) - 1, 

K ’ ( 7 )  = G ; ( 7 ) + ( n - f l o )  W v ) ,  (7 .8)  

nSoy2+{n2+X~-2(n+So)+  1}7+nSo = 0, (7.9) 

So (1 +n4)2. (7.10) 

It now follows that the first appearance of a V ;  complementary function in 7 < 0, 
and hence of a transmitted wave, is associated with n = 1 and occurs at the ninth 
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stage of the expansion (2.9). The appropriate value of So is 4 and (7.9) has a double 
zero a t  7 = 1. In  view of the double zero in the quadratic corresponding to (4.8), the 
transition layer near 7 = - 1 is of thickness v-4 instead of v-*, which would be 
the case in the neighbourhood of a simple zero, and this permits a discontinuity in the 
V; complementary function across it. A V ;  complementary function cannot occur 
for 7 > - 1, since it would be singular a t  7 = 0, and therefore must be set up when 
7 < - 1, leading to a transmitted wave as 7 --f - CQ except in the fortuitous and highly 
unlikely case of the forcing function vanishing to  a large enough order a t  7 = - 1.  
We conclude that the transmission coefficient hasamplitude O(T 12) in the first harmonic. 

For the second harmonic the roots of (7.9) are real for So 2 6 and when AS, = 6 they 
occur a t  7 = - Q ,  - 9.  Thus for So = 6 two complementary functions are set up a t  the 
twelfth stage, and except if they happen to cancel each other exactly when 7 < - 3  
we obtain a second harmonic to the transmission coefficient of order T’Z’+~’’. Higher 
harmonics do not occur before the (4 + 4n* + n)th stage. 

8. Discussion 
According t o  linear theory a strongly stratified shear layer has the property, first 

discovered by Booker & Bretherton (1 967), of absorbing an incident wave of amplitude 
E (< 1) so that it is neither reflected nor transmitted. Our aim in the three papers of 
this work was to elucidate further the nature of the absorption process and to examine 
whether the same properties persist indefinitely. We were not concerned with flow 
properties O(e2)  which might arise from the effect of nonlinear terms in the governing 
equations a t  a general point in the flow field and may well depend on the precise way 
in which the incident wave and the shear flow are set up. We concentrated our study 
on phenomena of the same size as the incident wave but which, being generated by 
nonlinear terms, might take a long time to evolve. 

I n  the first part we showed that such effects arise from the neighbourhood of the 
critical level at which the phase velocity of the incident wave and the local fluid velo- 
city are equal, conveniently taken to be y = 0. A general procedure for their calcu- 
lation has been developed which, in principle, would enable us to  compute the shapes 
of the reflected and the transmitted waves at  this level and for all local Richardson 
numbers J ( = v2 + t).  However, it rapidly becomes very cumbersome, and we con- 
tented ourselves with the computation of the leading term in the reflected wave when 
v 9 1 and to noting that the corresponding t,erm in the transmitted wave is exponen- 
tially small. I n  a separate study Mr A. T. Burke has removed the restriction v 3 1 
from this calculation. The complexity of the work involved also obscures the signifi- 
cance of the linear mechanics of the absorption process and of the generation of the 
reflected wave. 

1 from the outset 
and obtaining explicit expressions for the linear solution at  large times. We showed 
that the linear equations in the shear layer contain two pairs of solutions, one of which 
matches to  an external wave motion and the other has an algebraic dependence on 
time ( t - + f i U ) ,  and which may conveniently be described as noise. This second class is 
closely related to the genesis of the disturbance and so any phenomenon which depends 
on its properties must be regarded as being to some extent arbitrary and not easily 
susceptible to study by the methods of this paper. Fortunately such effects are O(e2) ,  

Consequently in part 2 we made a fresh start by assuming that v 
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except in the neighbourhood of this critical level where the noise is virtually indepen- 
dent of initial conditions and also increases in intensity to become as important as the 
wavelike solutions. Indeed, were the wave allowed to penetrate to the critical level 
at y = 0, an unacceptable singularity would occur and this is prevented by a transition 
near aU’(0) yt = v ,  where it is converted into critical-level noise. 

These two classes of solution take on particularly simple forms near y = 0, when 
v $ 1, and these are also representative of their complete asymptotic expansions in 
descending powers of v .  Hence their use in the nonlinear theory enabled us to obtain 
explicit expressions for the dominant part of the various terms of the reflection and 
transmission coefficients when v 9 1 ,  more simply than by the precise method of part 
1, and moreoverwe could comment in more detail on their general properties. In  part 3 
we have developed the nonlinear solution as a series in powers of sfat ( = 7) through 
the use of the nonlinear terms of the equations as sources for the linear equations. In  
general, these sources generate solutions of the same form as the sources and are then 
of no significance, being O(e2) outside the critical layer. However, in certain circum- 
stances such solutions become singular at  one or two values of r] ( =  aU’(0) y t l v ) ,  
typically 7 = vS, and in order to have a smooth solution a complementary function 
must be generated either in r] > q8 or r ]  < y8, depending on whether this function is 
singular at  r] = 0 or corresponds to an unacceptable behaviour outside the shear layer 
(e.g. is an incident wave from below). 

Moreover, the appearance of a wave outside the shear layer depends on the class of 
complementary function so forced. A complementary function of the other class merely 
gives rise to noise at this stage, although at later stages it will contribute to the non- 
linear sources and lead to a singularity which provokes the wavelike solution. 

It can be seen, almost at once, that such must be the case for the transmitted wave, 
since the linear solution of part 2 is very simple in r ]  < 1 and the associated nonlinear 
sources cannot give rise to any additional complementary functions in r] < 0. The 
situation with the reflected wave is quite different, a whole succession of new com- 
plementary functions being generated above the critical level as the expansion pro- 
ceeds and, either directly or indirectly, they give rise to reflected waves. Outside the 
shear layer t’he form taken by the reflected wave is 

where d,, are algebraic functions of v,  log v and log t ,  and c,, are algebraic functions 
of v,  of which 

Also 
cl0 z 0.065v-l, cz0 N 0 . 0 0 9 ~ - Q .  (8.2) 

U’Z(0) R’(co) 
- - ( v 2 + & ) - n 2 a z  
UZ(C0) R’(0) (8.3) 

and N is the maximum value of n for which rn; > 0. Thus further harmonics occur in 
the reflected wave. A parallel situation is noted for unstratified shear flows with a 
mean vorticity gradient at  the critical layer (Stewartson 1978). In that case there is 
a velocity jump across the layer that takes the form 

- 7~ sin x + 7~ E I: bn,(s4t)41+2n+2 sin nx, 
n=lZ=O 
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with 

(8.5) b -2- b 1 
l o  - 1 9 2 ,  20 - 5 7 6 0 ,  

which indicates orders of magnitude comparable with (8.2) for the leading numerical 
terms. I n  the simplest problem of this type Stewartson was able to  show that the 
velocity jump tended to  zero as t tended to  infinity. 

I n  order to generate a transmitted wave it is first necessary to  modify the structure 
of the solution in 7 < 1 from that given in part 2. This necessitates a new comple- 
mentary function forced by a singularity of the nonlinear-source solution at a value 
?js(> 1) of 7 which can only be non-zero if 7 < ?j8. (The reflected wave comes from 
complementary functions non-zero in an infinite interval of 7 bounded from below.) 
This first happens a t  the fourth stage of the expansion, and the complementary 
function is a second harmonic of the original wave but it is not sufficiently different 
from the principal harmonic to produce the required singularity in 7 < 0. We have to  
wait until the sixth stage, when a noise-like complementary function, which is a fourth 
harmonic, is generated in 7 < ?js. Then a t  the ninth stage the interaction of this 
solution with three principal harmonic solutions produces a nonlinear source, which 
gives rise to  a singularity in 7 < 0, and this provokes a principal harmonic of the 
transmitted wave. After that, higher harmonics appear in an orderly fashion and 
also additional contributions to the lower harmonics are made; we have for the trans- 
mitted wave @T outside the shear layer the form 

@T = f11(dat)12  cos (ax + m l y  + 911) + * * * )  (8.6) 

where fll is a function of v only and has not yet been calculated. 
The solution in tthis paper is determined on the assumptions that 6 g 1 ,  v 9 1, and 

that e*t is finite but small. A study of (8.1) suggests that this last assumption is un- 
necessarily strong and the correct requirement is that d t  < vb where b is a positive 
number. It is not easy to  decide on the precise value of b in view of the resonances, 
which increase the order of magnitude of the induced complementary function by v4, 
or even more in the case of double resonance, but from (8.1) we may anticipate that 
b 2~ 4. Now the asymptotic forms (2;  5.16), (2; 5.17) of the linearized solution are 
crucial to the success of the method and these are valid if t 9 v .  Hence we must have 

(8.7) 
on taking b = Q. 

Here only the leading terms in the expansions for v 9 1 have been discussed, and 
even sofll in (8.6) was not found explicitly. Since the further terms are of an essentially 
similar kind we can be sure that the error in (8.1) is exponentially small and probably 
O(ecVn), which is the order of magnitude consistently neglected throughout the paper. 
It is of interest to consider the applicability of the present results to  finite values of 
the Richardson number since ecVn is very small even when v = 1 .  On the time scale 
on which the results of this study are valid the distortion to  the mean flow is only 
O(s2v2)  and hence small, so i t  seems unlikely that the local Richardson number will 
fall so low as to cause instability before the reflection and transmission predicted here 
have taken place. Indeed it is not clear that  a Richardson number of less than 0-25 
is a sufficient condition for dynamic instability. Geller, Tanaka & Fritts (1975) use 
it as a criterion, but Brown & Stewartson (1978) showed that the instability of a 
marginally unstable stratified shear flow was determined by the second and higher 
harmonics. The latter theory cannot be extended t o  stable basic flows because there 

1 < (t/v)% g (.v)-l 
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are no eigensolutions of the right kind. This difficulty also prevents us from making 
precise statements for the present problem. 

Laboratory experiments on critical layers are difficult to perform but a recent one 
by Thorpe (1981) is of especial interest to us. The mean flow was produced by tilting 
a tube containing stratified fluid and forcing transient waves by corrugating its base. 
The effective Richardson number was initially about unity and fell to unstable values 
after a few seconds. Nevertheless, Thorpe was able to distinguish some signs of wave 
reflection but not of transmission. 

We are grateful to  Professor S. A. Maslowe for constructive criticism during the 
preparation of this paper. 
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